Graph Convolutional Adversarial Network for Human Body Pose and Mesh Estimation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Convolutional Network for Human Pose Estimation

In recent years, human pose estimation has greatly benefited from deep learning and huge gains in performance have been achieved. However, to push for maximum performance recent approaches exploit computationally expensive deep network architectures, train on multiple datasets, apply additional post-processing and provide limited details about used design choices. This makes it hard not only to...

متن کامل

Self Adversarial Training for Human Pose Estimation

This paper presents a deep learning based approach to the problem of human pose estimation. We employ generative adversarial networks as our learning paradigm in which we set up two stacked hourglass networks with the same architecture, one as the generator and the other as the discriminator. The generator is used as a human pose estimator after the training is done. The discriminator distingui...

متن کامل

RAFI, KOSTRIKOV, GALL, LEIBE: EFFICIENT CNN FOR HUMAN POSE ESTIMATION 1 An Efficient Convolutional Network for Human Pose Estimation

In recent years, human pose estimation has greatly benefited from deep learning and huge gains in performance have been achieved. The trend to maximise the accuracy on benchmarks, however, resulted in computationally expensive deep network architectures that require expensive hardware and pre-training on large datasets. This makes it difficult to compare different methods and to reproduce exist...

متن کامل

Human Body Orientation Estimation using Convolutional Neural Network

— Personal robots are expected to interact with the user by recognizing the user's face. However, in most of the service robot applications, the user needs to move himself/herself to allow the robot to see him/her face to face. To overcome such limitations, a method for estimating human body orientation is required. Previous studies used various components such as feature extractors and classif...

متن کامل

Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation

This paper proposes a new hybrid architecture that consists of a deep Convolutional Network and a Markov Random Field. We show how this architecture is successfully applied to the challenging problem of articulated human pose estimation in monocular images. The architecture can exploit structural domain constraints such as geometric relationships between body joint locations. We show that joint...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.3041926